If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1185=16t^2
We move all terms to the left:
1185-(16t^2)=0
a = -16; b = 0; c = +1185;
Δ = b2-4ac
Δ = 02-4·(-16)·1185
Δ = 75840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{75840}=\sqrt{64*1185}=\sqrt{64}*\sqrt{1185}=8\sqrt{1185}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1185}}{2*-16}=\frac{0-8\sqrt{1185}}{-32} =-\frac{8\sqrt{1185}}{-32} =-\frac{\sqrt{1185}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1185}}{2*-16}=\frac{0+8\sqrt{1185}}{-32} =\frac{8\sqrt{1185}}{-32} =\frac{\sqrt{1185}}{-4} $
| 2x-x=4x | | 5/9(-11-32)=c | | 2(3w+1)/5=3 | | x/4/5=15/28 | | 7/15x=7/20 | | (x+8)^2=44 | | 3x=2+3/4x-1 | | 6x-10=5x-2 | | 8(2-5x)=6 | | X^2+2x+5=13 | | 3+2x+7=–3x–9 | | x²-15=0 | | 3x²-32=x² | | 9x+30=2x+121 | | 5^x-1=30-5^x | | 6m-4=1 | | 5+4c=11 | | 8x-5=2x+43 | | 4(j+5)=2j+35 | | 4(j+5=2j+35 | | 5y-5=40 | | 2x-17=7x+2 | | 18=7u+4 | | 48+2x^2=16 | | 3/5=5x/20 | | 2x/5=-24/15 | | 3(x+7)=4(3x+8) | | 5x2-48=2x2 | | 3(x+7)=4(3x-8) | | 35m=11 | | 5x²11x-2=0 | | x+1/x-1-x-1/x+1=4/x^2-1 |